(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
minus(minus(x, y), z) → minus(x, plus(y, z))
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
minus(minus(x, y), z) → minus(x, plus(y, z))
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
minus(minus(x, y), z) → minus(x, plus(y, z))
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
app :: nil:cons → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sum :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
quot,
plus,
app,
sumThey will be analysed ascendingly in the following order:
minus < quot
plus < minus
plus < sum
app < sum
(6) Obligation:
Innermost TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
minus(
minus(
x,
y),
z) →
minus(
x,
plus(
y,
z))
app(
nil,
k) →
kapp(
l,
nil) →
lapp(
cons(
x,
l),
k) →
cons(
x,
app(
l,
k))
sum(
cons(
x,
nil)) →
cons(
x,
nil)
sum(
cons(
x,
cons(
y,
l))) →
sum(
cons(
plus(
x,
y),
l))
sum(
app(
l,
cons(
x,
cons(
y,
k)))) →
sum(
app(
l,
sum(
cons(
x,
cons(
y,
k)))))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
app :: nil:cons → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sum :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
The following defined symbols remain to be analysed:
plus, minus, quot, app, sum
They will be analysed ascendingly in the following order:
minus < quot
plus < minus
plus < sum
app < sum
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_0':s3_0(
n6_0),
gen_0':s3_0(
b)) →
gen_0':s3_0(
+(
n6_0,
b)), rt ∈ Ω(1 + n6
0)
Induction Base:
plus(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
gen_0':s3_0(b)
Induction Step:
plus(gen_0':s3_0(+(n6_0, 1)), gen_0':s3_0(b)) →RΩ(1)
s(plus(gen_0':s3_0(n6_0), gen_0':s3_0(b))) →IH
s(gen_0':s3_0(+(b, c7_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
minus(
minus(
x,
y),
z) →
minus(
x,
plus(
y,
z))
app(
nil,
k) →
kapp(
l,
nil) →
lapp(
cons(
x,
l),
k) →
cons(
x,
app(
l,
k))
sum(
cons(
x,
nil)) →
cons(
x,
nil)
sum(
cons(
x,
cons(
y,
l))) →
sum(
cons(
plus(
x,
y),
l))
sum(
app(
l,
cons(
x,
cons(
y,
k)))) →
sum(
app(
l,
sum(
cons(
x,
cons(
y,
k)))))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
app :: nil:cons → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sum :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
plus(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
The following defined symbols remain to be analysed:
minus, quot, app, sum
They will be analysed ascendingly in the following order:
minus < quot
app < sum
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_0':s3_0(
+(
1,
n739_0)),
gen_0':s3_0(
+(
1,
n739_0))) →
*5_0, rt ∈ Ω(n739
0)
Induction Base:
minus(gen_0':s3_0(+(1, 0)), gen_0':s3_0(+(1, 0)))
Induction Step:
minus(gen_0':s3_0(+(1, +(n739_0, 1))), gen_0':s3_0(+(1, +(n739_0, 1)))) →RΩ(1)
minus(gen_0':s3_0(+(1, n739_0)), gen_0':s3_0(+(1, n739_0))) →IH
*5_0
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
minus(
minus(
x,
y),
z) →
minus(
x,
plus(
y,
z))
app(
nil,
k) →
kapp(
l,
nil) →
lapp(
cons(
x,
l),
k) →
cons(
x,
app(
l,
k))
sum(
cons(
x,
nil)) →
cons(
x,
nil)
sum(
cons(
x,
cons(
y,
l))) →
sum(
cons(
plus(
x,
y),
l))
sum(
app(
l,
cons(
x,
cons(
y,
k)))) →
sum(
app(
l,
sum(
cons(
x,
cons(
y,
k)))))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
app :: nil:cons → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sum :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
plus(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
minus(gen_0':s3_0(+(1, n739_0)), gen_0':s3_0(+(1, n739_0))) → *5_0, rt ∈ Ω(n7390)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
The following defined symbols remain to be analysed:
quot, app, sum
They will be analysed ascendingly in the following order:
app < sum
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol quot.
(14) Obligation:
Innermost TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
minus(
minus(
x,
y),
z) →
minus(
x,
plus(
y,
z))
app(
nil,
k) →
kapp(
l,
nil) →
lapp(
cons(
x,
l),
k) →
cons(
x,
app(
l,
k))
sum(
cons(
x,
nil)) →
cons(
x,
nil)
sum(
cons(
x,
cons(
y,
l))) →
sum(
cons(
plus(
x,
y),
l))
sum(
app(
l,
cons(
x,
cons(
y,
k)))) →
sum(
app(
l,
sum(
cons(
x,
cons(
y,
k)))))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
app :: nil:cons → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sum :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
plus(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
minus(gen_0':s3_0(+(1, n739_0)), gen_0':s3_0(+(1, n739_0))) → *5_0, rt ∈ Ω(n7390)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
The following defined symbols remain to be analysed:
app, sum
They will be analysed ascendingly in the following order:
app < sum
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
app(
gen_nil:cons4_0(
n3150_0),
gen_nil:cons4_0(
b)) →
gen_nil:cons4_0(
+(
n3150_0,
b)), rt ∈ Ω(1 + n3150
0)
Induction Base:
app(gen_nil:cons4_0(0), gen_nil:cons4_0(b)) →RΩ(1)
gen_nil:cons4_0(b)
Induction Step:
app(gen_nil:cons4_0(+(n3150_0, 1)), gen_nil:cons4_0(b)) →RΩ(1)
cons(0', app(gen_nil:cons4_0(n3150_0), gen_nil:cons4_0(b))) →IH
cons(0', gen_nil:cons4_0(+(b, c3151_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
Innermost TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
minus(
minus(
x,
y),
z) →
minus(
x,
plus(
y,
z))
app(
nil,
k) →
kapp(
l,
nil) →
lapp(
cons(
x,
l),
k) →
cons(
x,
app(
l,
k))
sum(
cons(
x,
nil)) →
cons(
x,
nil)
sum(
cons(
x,
cons(
y,
l))) →
sum(
cons(
plus(
x,
y),
l))
sum(
app(
l,
cons(
x,
cons(
y,
k)))) →
sum(
app(
l,
sum(
cons(
x,
cons(
y,
k)))))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
app :: nil:cons → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sum :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
plus(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
minus(gen_0':s3_0(+(1, n739_0)), gen_0':s3_0(+(1, n739_0))) → *5_0, rt ∈ Ω(n7390)
app(gen_nil:cons4_0(n3150_0), gen_nil:cons4_0(b)) → gen_nil:cons4_0(+(n3150_0, b)), rt ∈ Ω(1 + n31500)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
The following defined symbols remain to be analysed:
sum
(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sum(
gen_nil:cons4_0(
+(
1,
n4207_0))) →
gen_nil:cons4_0(
1), rt ∈ Ω(1 + n4207
0)
Induction Base:
sum(gen_nil:cons4_0(+(1, 0))) →RΩ(1)
cons(0', nil)
Induction Step:
sum(gen_nil:cons4_0(+(1, +(n4207_0, 1)))) →RΩ(1)
sum(cons(plus(0', 0'), gen_nil:cons4_0(n4207_0))) →LΩ(1)
sum(cons(gen_0':s3_0(+(0, 0)), gen_nil:cons4_0(n4207_0))) →IH
gen_nil:cons4_0(1)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(19) Complex Obligation (BEST)
(20) Obligation:
Innermost TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
minus(
minus(
x,
y),
z) →
minus(
x,
plus(
y,
z))
app(
nil,
k) →
kapp(
l,
nil) →
lapp(
cons(
x,
l),
k) →
cons(
x,
app(
l,
k))
sum(
cons(
x,
nil)) →
cons(
x,
nil)
sum(
cons(
x,
cons(
y,
l))) →
sum(
cons(
plus(
x,
y),
l))
sum(
app(
l,
cons(
x,
cons(
y,
k)))) →
sum(
app(
l,
sum(
cons(
x,
cons(
y,
k)))))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
app :: nil:cons → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sum :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
plus(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
minus(gen_0':s3_0(+(1, n739_0)), gen_0':s3_0(+(1, n739_0))) → *5_0, rt ∈ Ω(n7390)
app(gen_nil:cons4_0(n3150_0), gen_nil:cons4_0(b)) → gen_nil:cons4_0(+(n3150_0, b)), rt ∈ Ω(1 + n31500)
sum(gen_nil:cons4_0(+(1, n4207_0))) → gen_nil:cons4_0(1), rt ∈ Ω(1 + n42070)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
(22) BOUNDS(n^1, INF)
(23) Obligation:
Innermost TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
minus(
minus(
x,
y),
z) →
minus(
x,
plus(
y,
z))
app(
nil,
k) →
kapp(
l,
nil) →
lapp(
cons(
x,
l),
k) →
cons(
x,
app(
l,
k))
sum(
cons(
x,
nil)) →
cons(
x,
nil)
sum(
cons(
x,
cons(
y,
l))) →
sum(
cons(
plus(
x,
y),
l))
sum(
app(
l,
cons(
x,
cons(
y,
k)))) →
sum(
app(
l,
sum(
cons(
x,
cons(
y,
k)))))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
app :: nil:cons → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sum :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
plus(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
minus(gen_0':s3_0(+(1, n739_0)), gen_0':s3_0(+(1, n739_0))) → *5_0, rt ∈ Ω(n7390)
app(gen_nil:cons4_0(n3150_0), gen_nil:cons4_0(b)) → gen_nil:cons4_0(+(n3150_0, b)), rt ∈ Ω(1 + n31500)
sum(gen_nil:cons4_0(+(1, n4207_0))) → gen_nil:cons4_0(1), rt ∈ Ω(1 + n42070)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
(25) BOUNDS(n^1, INF)
(26) Obligation:
Innermost TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
minus(
minus(
x,
y),
z) →
minus(
x,
plus(
y,
z))
app(
nil,
k) →
kapp(
l,
nil) →
lapp(
cons(
x,
l),
k) →
cons(
x,
app(
l,
k))
sum(
cons(
x,
nil)) →
cons(
x,
nil)
sum(
cons(
x,
cons(
y,
l))) →
sum(
cons(
plus(
x,
y),
l))
sum(
app(
l,
cons(
x,
cons(
y,
k)))) →
sum(
app(
l,
sum(
cons(
x,
cons(
y,
k)))))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
app :: nil:cons → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sum :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
plus(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
minus(gen_0':s3_0(+(1, n739_0)), gen_0':s3_0(+(1, n739_0))) → *5_0, rt ∈ Ω(n7390)
app(gen_nil:cons4_0(n3150_0), gen_nil:cons4_0(b)) → gen_nil:cons4_0(+(n3150_0, b)), rt ∈ Ω(1 + n31500)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
(28) BOUNDS(n^1, INF)
(29) Obligation:
Innermost TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
minus(
minus(
x,
y),
z) →
minus(
x,
plus(
y,
z))
app(
nil,
k) →
kapp(
l,
nil) →
lapp(
cons(
x,
l),
k) →
cons(
x,
app(
l,
k))
sum(
cons(
x,
nil)) →
cons(
x,
nil)
sum(
cons(
x,
cons(
y,
l))) →
sum(
cons(
plus(
x,
y),
l))
sum(
app(
l,
cons(
x,
cons(
y,
k)))) →
sum(
app(
l,
sum(
cons(
x,
cons(
y,
k)))))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
app :: nil:cons → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sum :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
plus(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
minus(gen_0':s3_0(+(1, n739_0)), gen_0':s3_0(+(1, n739_0))) → *5_0, rt ∈ Ω(n7390)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
No more defined symbols left to analyse.
(30) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
(31) BOUNDS(n^1, INF)
(32) Obligation:
Innermost TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
minus(
minus(
x,
y),
z) →
minus(
x,
plus(
y,
z))
app(
nil,
k) →
kapp(
l,
nil) →
lapp(
cons(
x,
l),
k) →
cons(
x,
app(
l,
k))
sum(
cons(
x,
nil)) →
cons(
x,
nil)
sum(
cons(
x,
cons(
y,
l))) →
sum(
cons(
plus(
x,
y),
l))
sum(
app(
l,
cons(
x,
cons(
y,
k)))) →
sum(
app(
l,
sum(
cons(
x,
cons(
y,
k)))))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
app :: nil:cons → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sum :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
plus(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
No more defined symbols left to analyse.
(33) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
(34) BOUNDS(n^1, INF)